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The results of a process of formation of high-energy deuterons from targets exposed to 25-30 BeV proton 
beams are evaluated. The formation mechanism involves the pairing of a neutron and proton from the cas
cade of nucleons which develops within the struck nucleus. The interactions responsible for the deuteron 
formation are firstly the average nuclear interaction seen by the cascade nucleons within the nucleus, and 
secondly the normal neutron-proton interaction. A magnitude of 25 MeV for the modulus of the real and 
imaginary nuclear potentials is sufficient to ensure good agreement with experiment for all energies of the 
outgoing deuterons and for all emerging angles. 

1. INTRODUCTION 

IN this paper we amplify our previous remarks1 

concerning the process of formation of high-energy 
deuterons from targets exposed to 25-30 BeV proton 
beams.2,3 

The formation mechanism we propose involves the 
pairing of a neutron and proton from the cascade of 
nucleons which develops within the struck nucleus. 
With this mechanism there is an immediate connection 
between the momentum distribution of deuterons 
emerging at a given angle, and the corresponding 
distribution of protons at that angle. Let the momentum 
distribution of emerging protons at an angle 0 with 
respect to the incident beam be p(k); it may then be 
assumed that emerging neutrons have the same 
distribution. 

The interactions responsible for the deuteron for
mation are firstly the average nuclear interaction seen 
by the cascade nucleons within the nucleus, and 
secondly the normal n-p interaction. However, the 
recoil momentum which the nucleus can absorb in the 
deuteron formation process is relatively small; similarly 
the relative momentum of the two nucleons must be 
small. Hence the deuterons are formed from pairs of 
neutrons and protons which have roughly equal 
momenta. 

The probability of formation of a deuteron of 
momentum K is thus to be expected to be proportional 
to p2(K/2). Other momentum-dependent factors in the 
proportionality are determined by calculation; the 
resulting momentum dependence of the deuterons is 
in good agreement with experiment. 

In addition, the deuteron formation probability is 
proportional to | F0 |2, where \VQ\ is the magnitude of 
the optical potential depth. A quantitative comparison 
with experimental results thus permits of a deter
mination of | V0\. It is found that in all cases a value of 
25 MeV for \V0\ gives excellent agreement between 

1 S. T. Butler and C. A. Pearson, Phys. Rev. Letters 7, 69 
(1961); Physics Letters 1, 77 (1962). 

2V. T. Cocconi, T. Fazzini, C. Fideca.ro, M. Legros, N. H. 
Lipman, and A. W. Morrison, Phys. Rev. Letters 5, 19 (I960). 

3 V. L. Fitch, P. Piroue, S. T. Meyer, and M. C. Williams (to 
be published). 

the observed and calculated deuteron momentum 
distributions. This value of the potential strength is 
in good agreement with that obtained by Bjorklund 
et al,A when fitting the high-energy proton scattering 
data at 300 MeV. In our case the magnitude | V0\ 
includes both real and imaginary parts, i.e., it is the 
magnitude of the full complex potential; the results at 
300 MeV indicate4 that the main contributions must 
be absorptive and arise from the imaginary term. 

The present comparison with experimental results 
suggests that the main features of the optical potential 
are energy independent for proton energies between 
300 and 900 MeV; the increase in | F0 | over this energy 
range appears to be at most 10%. 

The alternative suggestion that the high-energy 
deuterons are produced primarily in elementary 
nucleon-nucleon collisions5 does not account for the 
observed features of the deuteron production from 
nuclei. The ratio of deuterons to protons of the same 
momentum is found to be approximately constant over 
a wide energy range.2 On the other hand, the predictions 
of the nucleon-nucleon collision model are extremely 
energy-dependent. Moreover the experimental results 
include measurements of the momentum spectrum of 
deuterons emitted at 90° in the laboratory system.3 

Such deuterons cannot come directly from nucleon-
nucleon collisions, but must be produced by a secondary 
process within the nucleus. However, the deuteron and 
proton momentum spectra are related at 90° in exactly 
the same way as at the smaller angles and the results 
at all angles yield an optical potential depth | F 0 | ^25 
MeV. 

We, thus, believe that the mechanism considered in 
this paper, which requires the presence of nuclear 
matter for the deuteron production, to be the pre
dominant one at all angles. 

2. SECOND-ORDER MATRIX ELEMENT— 
NONRELATIVISTIC 

We first perform the nonrelativistic perturbation 
calculation. The extension to include relativistic effects 

4 F. Bjorklund, I. Blandford, and S. Fernbach, Phys. Rev. 108, 
795 (1957). 

8 R. Hagedorn, Phys. Rev. Letters 5, 276 (I960), 
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can then be carried out quite simply, and we do so in 
Sec. 4. 

Consider two nucleons (neutron and proton) of 
momenta tiki and &k2, respectively, so that the initial 
wave function ^0 is 

^o= (1/L3) exp f t fk r rH-kr r* ) ] , (1) 

where L is the linear dimension of a normalization cube. 
The final wave function \p describing a deuteron with 
momentum K is then 

^=(l /L*/2)x(r)exp(*K-R), (2) 

where R is the c m . coordinate | ( r i + r 2 ) , r is the relative 
coordinate r2—ri, and x is the internal deuteron wave 
function. 

The transition probability w(K)JK that after time t 
the optical potential V(ri)+V(r2)7 combined with the 
internal neutron-proton interaction fl(r), produces a 
deuteron of wave vector K in the interval dK is 

4|ff,7<*Masin2(W) 
<o(K)iK= :—P(K)</K. 

ft2 Wij2 
(3) 

Here H;/2) is the second-order matrix element involving 
the product (7,t>), p(K) is the density of final states, 
and 

hwif— Ei—E/j 

where Ei and E/ are the initial and final energies, 
respectively. 

The second-order matrix element Hi/2) is given as 

ff,-/2,=Z 
Ei-E, ' 

(4) 

where £Ty(1) and Hj/a) are first-order matrix elements 
to and from an intermediate state j , respectively. We 
devote the remainder of this section evaluating Hi/{2). 

There are three types of contributions to (4), corre
sponding to the three diagrams of Fig. 1. We consider 
first the term, say [Ht / 2 ) ] i , for which particle 1, with 
wave vector ki, is scattered by V(ri) into an inter
mediate state, k / , and, thereafter, joined to particle 2 
in a deuteron by v(r). For this term we have 

LB-, . / i ) ] 1 = _ (dry exppCki-k iO-rGKfa) 

(5) = — g ( l k i - k i ' i ) , 

where g is the Fourier transform of V. 
Similarly, we have 

[ H i / » ] i = tdndn e x p p f o ' - r d - k r r , ) ] 
£3^8/2 J 

X t » ( f ) x W c x p ( - « . R ) 

= - ^ - * < K ' - K ) / * J r e x p ( ~ A ' . r > W x W , (6) 
L*Lm J 

ccn Cb> CO 

FIG. 1. Diagrams (a), (b), (c) illustrate the simplest means of 
deuteron formation, ki, ks are the momenta of the proton and 
neutron in the initial state, q the recoil of the nucleus, and K the 
deuteron momentum in the final state. In case (a) the neutron 
and proton interact first with each other to form an intermediate 
deuteron state. This deuteron is then scattered by the nucleus 
into the final state. In case (b) the neutron is scattered into an 
intermediate state by an interaction with the nucleus. The 
scattered neutron and an unscattered proton then interact with 
each other to form a deuteron. In case (c) a scattered proton pairs 
with an unscattered neutron. 

where 

and 
K^k/H-ks 

k'=i(k/-k 2) . 

If we write x(r) m the Hulthen form 

xM=(C/ r ) (< r^ -e - fO , (7) 

the integral in (6) can be readily evaluated to be 

-±lrC(h2/tn)[\+ (£'2+72)/(£ /2+m (8) 

where m is the nucleon mass, and fi2y2/m is the deuteron 
binding energy. We have actually found the effect of 
the second term (involving f) to be quite small, and 
hereafter employ simply the asymptotic form for the 
deuteron wave function. For normalization of x we have 

C2~7
2/27r. (9) 

For the term under consideration, the energy 
denominator Ej—Ef is simply expressed by noting 
that k / = K - k , . We find 

E~Ef= ( fcy™)[(§K-k 2 ) '+7 2 ] . (10) 

Thus after summing over intermediate states we 
find our first contribution [i7,y<2)3i as 

,. _ 4xC g ( | K , - K | ) 
(11) La if 

where 

and 

J1 L«L«[k,+i(K-K,-)?+72 

K.=kH-k2 

k^Kkx-k*). 

Thus K» and k* are the initial c m . and internal wave 
vectors of the two free nucleons. 

The second contribution, [23Va )]a , with particle 2 
being scattered into the intermediate state k2', is 
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identical to (11) except that +|(K— K») becomes 
— |(K— Kt-) in the denominator. 

Finally the third contribution, in which a virtual 
deuteron is formed with wave vector K' in the inter
mediate state, has matrix elements 

[F4/D]3= f ^ R e x p p ( K r R + k r r ) ] 

X*toxWexp(- ;K' .R) 

= (2T)»J (K<-K ' ) 
LW m 

and 

[ffy/1>]»=- fdttdttxir) txp(fK'-R) 

X[7(fi) + 7(f , ) ]x(f )^ r - R . 

We make the approximate replacement V(ri)+V(r2) 
~2V(R) so that 

[ F ^ > ] 3 = ( 2 / L % ( | K t - K | ) . 

After summing over intermediate states K' we find 

2X4«C*( |K.-K|) 

1*1*11 k2+y2 

The total second-order matrix element is thus 

4TTC 
j y v » = g(2x) 

(12) 

X 
r_J i i -i 
L&^+T2 (k,+x)2+72 (k,-x)2+7

2J 

where 
x=§(Kr-K). (14) 

3. DEUTERON FORMATION PROBABILITY 

4 6 8 
NUCLEAR RADIUS (fefmi) 

FIG. 2. The function / [Eq. (22)] is plotted as a function of the 
nuclear radius. The full curve is for a square well, and the dashed 
for a Saxon potential. 

Thus, we finally have a deuteron distribution per 
nucleus n(K)dK with 

/L\z 4 / 3LZ \2 r 

sin2
 (§M\-/T) 

X ff</<»|* 
Wj/ 2 

, (16) 

We now wish to evaluate the probability of deuteron 
formation when the total number of cascade nucleons 
of each type per nucleus has the distribution p(k)dk 
so that we have p(k)dk of each type of nucleon with 
wave vector between k and k+dk within the nucleus 
at any one time. Thus, we must multiply our transition 
probability (3) by 

pfkOdkipQu^dkti 
\4wRQ*/3/ ' 

where R0 is the nuclear radius, and integrate over all 
ki and k2. 

We wish to find the number of deuterons n(K)dK 
which are formed in a time r for one traversal of the 
nucleus by each pair of nucleons whose cm. momentum 
is close to K. Thus we have approximately 

rc^AmR^/hK, 

where m is the nucleon mass. 

(15) 

with r given by Eq. (15). 
If we make the transformation dk\dk2 —> dVLidkj. we 

have ^(k1) = ^( iK+k t +x) and p(k2) = p$K-ki+x). 
But in view of the large values of K involved, and the 
relatively much smaller values of ki and x, we may 
clearly take the p factors outside the integral as 

Thus we find 

n(K)= (6CA)2- -\j(mj [dKJkte(2x)J 
(2TT1?O2)* J 

xT-? l- l—t 
L^+72 (k;+x)2+7

2 (ki-x)2+72J 
sin2 (w if T) 

X . (17) 
Wif 

We can now integrate immediately over the mag
nitude of K,-, noting that 

K%4Ki= (2m/fi)dwif. (18) 
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From the energy-conservation factor in (17) we have 

KZ~K2-4t(k*+y2)~K* (19) 
and thus 

s = J|K-K<|c-K: sin(e/2)~K6/2, (20) 

where 0, the angle between K and Kt, has very small 
contributing values. 

After performing the integration over Wij—which 
extracts a factor \TCT—we can also immediately inte
grate over all angles of ki, and over the azimuthal 
angle of K*. The integration over 6—the angle between 
Ki and K—can be taken from 0 —» oo, and we find 

n(K) = 2(-^~) ^—J /WQKiK)]', (21) 

where I(RQ) is a dimensionless number, which is, how
ever, a function of RQ. We have 

I(Ro)= f vdrilGMJ 
Jo 

x[ r2#r 
Jo L(f*+rf (f'+a5)2 (f2+h2+a !)-fV 

( — 1 ) 

V(f2+«2) (f2+h2+a2)^/ 
«2+(r+i/2)2i Xln 

Here we have defined 
a'+(t;-V/2y. 1 

a=yRo 
and 

G(,)=(VW)«W.), 

(22) 

(23) 

where Vo is the central depth of the optical potential. 
Thus for a square well, for example, we have 

G(i?)= ( W ) ( s i n i j - i f COST?). (24) 

The function I(RQ) has been evaluated numerically 
for a number of different radii using Silliac, both for a 
square well, and for a Saxon potential with surface 
thickness 0.6 F. The function is plotted in Fig. 2, and 
it is seen that the results for the two potential shapes 
are very similar. The deuteron formation probability 
is essentially the same in each case, the differences 
lying within the accuracy of the experimental results 
with which we shall make comparisons. 

All experimental results have been stated in terms of 
a number of particles per unit solid angle, per unit 
momentum (1 BeV/c) per circulating proton. Let these 
distributions be designated np and fid for protons and 
deuterons, respectively. Then if tj be the efficiency of 
the target, we have 

and 
**p(k) = ^ ( k ) , 

*n(K)=*JP»(K). 

2 .4 .6 .8 1.0 1.2 1.4 1.6 
MOMENTUM BeV/c 

FIG. 3. A comparison of the observed and calculated momentum 
distributions for deuterons produced from a Be target at an angle 
of 45° in the laboratory system by protons with incident energy 
30 BeV. Curves 2 and 3 are the observed and the calculated 
deuteron distribution (34). Curve 1 is the experimental distri
bution of cascade protons used to calculate (34). The experimental 
data are those of Fitch et al. (reference 3). 

If we also multiply the deuteron numbers by the spin 
factor f, we have finally 

nd(K)= y (jJ/(#o)[%(|K)]s, (25) 

where /c2=mFo/ft2 and where A is a wave number corre
sponding to 1 BeV/c. The value of the efficiency for 
the Brookhaven experiments3 is thought to be approxi
mately J, i.e., ij~J. 

4. RELATIVISTIC CORRECTIONS 

A relativistic calculation is simplified enormously by 
the fact that contributions to our matrix elements arise 
only from small relative momenta (internal deuteron 
momenta). Thus it is only the cm. motion of the two 
nucleons which must be treated relativistically. Only 
one time t need be considered, which we still measure 
in the laboratory system—i.e., in the frame of reference 
in which the optical potential is at rest. All relativistic 
corrections then appear in terms of the factor T, with 

r = ( i - ^ / ^ - 1 ' ^ ( i - » 1 v ^ - - 1 ' ^ ( i - ^ / 6 * ) - 1 ^ (26) 

where V is the cm. velocity of the two nucleons (almost 
unchanged by the deuteron formation), and vx and v2 
are the J initial velocities of the two nucleons, 
respectively. 
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FIG. 4. As in Fig. 3, the deuterons are produced from a Be target 
at an angle of 30° in the laboratory system by protons with 
incident energy 30 BeV. The curves are labeled as in Fig. 3, and 
the experimental results are those of Schwarzschild and Zupan&c' 
(reference 6). 

There are several points in the calculation at which 
T factors arise: 

(1) Energy Denominators 

Consider, for example, the energy denominator (10) 
relating to the matrix element [Hifm~]\. This has the 
relativistic form 

Ej-Ef= (¥k1
f2c2+m2c4)li2+ (¥k2

2c2+m2^2 

-(ti2K2c2+M*2c*)v2, (27) 

where M* is the deuteron mass, and m the nucleon mass. 
We recall that ki'=K—1*2. We know that contri

butions arise from k2^|K, and can, therefore, expand 
the terms of (27) around k2=|K, and also in terms of 
the binding energy € of the deuteron. We find 

Ei-Ef^c2lh2{\K)2c2+m2c^2 

X[fc2(£K-k2)2+me] 
= (1/D (fcyW)[(|K~k2)H-72]. (28) 

This is the same as the nonrelativistic result (10), 
apart from the factor 1/r. The same is true for the other 
energy denominators. 

(2) Internal Deuteron Coordinates 

The deuteron wave function % n(>w assumes its 
simple spherically symmetrical form only in terms of 
the relative coordinate, say r', in the frame of reference 

in which the center of mass is at rest. Thus 

x(r)*=C<r^/r' 

C exp{ - T C ^ + ^ + r V ] 1 / 2 } 

{x2+f+Th2}1/2 

where (x,y,z) are the Cartesian components of r, and 
z is the direction of motion of the center of mass. The 
requirement that x be normalized to unity in the 
laboratory system thus yields 

(7^27rr/7 
in place of (9). 

(3) Matrix Elements 

Each matrix element of the form 

(30) 

M--7* exp(^-r>(r)x(r) 

now has v(t) and xOO simply expressed in terms of r'. 
By changing the variable of integration form r to r' we 
have 

M-
•F /*" 

exp(^'-r>(r ')x(r ') , 

where ^/ is related to X by Lorentz transformation. 
Thus by the evaluation as carried out previously, we 
have 

M= ~ (l/T)4xrCW/m} (31) 

•6 .8 1.0 1.2 
MOMENTUM BeV/c 

FIG. 5. As in Fig. 3, the deuterons are produced from a Be 
target at an angle of 90° in the laboratory system by protons 
with incident energy 30 BeV. The curves are labeled as in Fig. 3, 
and the experimental data are those of Fitch et al. (reference 3). 
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which replaces (8). This factor of 1/T is cancelled by 
that from the energy denominators. 

(4) Integration over K{ 

Instead of (18) we now find 

KidKi= {2m/fi)Vdwif. (32) 

(5) Time <c of Nuclear Traversal 

Instead of (15) we now have 

T~2R0/V=4mRQr/tiK. (33) 

After collection of all T factors, we find that the 
deuteron formation probability is multiplied by Tz. 
Thus our final result is 

3w 
nd(K)=—(48)2 

\KJ\A/\4mV / 

X/(*o)[>p(iK)]s. (34) 

5. RESULTS 

By choosing as the radius for the target nucleus 
Ro= 1.2Am F and using the appropriate value for I(Ro) 
from Fig. 2, we have compared the expression for the 
expected deuteron momentum spectrum (34) with 
those measured at various angles. These comparisons 
are shown in Figs. 3-8, together with the experimental 

.4 .6 .8 1.0 12 14 
MOMENTUM BeV/c 

FIG. 6. A comparison of the observed and calculated momentum 
distributions for deuterons produced from an Al target by protons 
with incident energy 30 BeV at an angle of 45° in the laboratory 
system. The curves are labeled as in Fig. 3. The experimental 
results are those of Fitch et al. (referenced). 

id4
 z .6 .8 1.0 1.2 1.4 

MOMENTUM BeV/c 
1.6 

FIG. 7. As in Fig. 3, the deuterons are produced from a Be 
target at an angle of 90° in the laboratory system by protons 
with an incident energy of 10 BeV. The curves are labeled as in 
Fig. 3, and the experimental results are those of Fitch et al. 
(reference 3). 

proton distributions which have been substituted in 
(34). 

By comparing (34) with the observed deuteron 
momentum distributions we can determine the mag
nitude and energy dependence of the optical potential 
strength |F 0 | which are necessary to fit the experi
mental results. In Figs. 3-6 we have used for the 
magnitude of the optical potential at all energies the 
constant value j F0 | =25±5 MeV found by fitting the 
expression (34) to the observed number of deuterons 
with momentum 1.1 BeV/c scattered from a Be target 
at an angle of 45° in the laboratory system shown in 
Fig. 3. The target efficiency was taken to be 50%. 

In Figs. 3, 4, and 5 the expression (34) is compared 
with the experimental deuteron distributions from a 
Be target struck by 30-BeV primary protons, observed 
at angles of 45°, 30°, and 90° in the laboratory system. 
The experimental results in Figs. 3, 5, 6, and 7 are those 
of Fitch et al? and in Fig. 4 those of Schwarzschild and 
Zupan&c.6 In Fig. 6 the expression (34) is compared 
with the experimental results for deuterons produced 
(at an angle of 45° in the laboratory system) from an 
Al target by protons with incident energy 30 BeV; the 
same value of | VQ\ is employed. 

In Fig. 7 the expression (34) is compared with the 
number of deuterons produced from a Be target at 90° 
by protons with incident energy 10 BeV. Since the 
efficiency of the target was not known for 10-BeV 

6 A. Schwarzschild and C. Zupancic (to be published). 
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FIG. 8. A comparison of the calculated deuteron momentum 
distribution (34) with that observed for deuterons produced from 
Al and Pt targets at an angle of 16.9° in the laboratory system by 
Cocconi et al. (reference 1). Curve 1 is the experimental distribu
tion of cascade protons used to calculate (34). Curves 2 and 3 are 
the calculated expression (34) and the observed deuteron momen
tum distribution. Because the experimental proton distribution 
employed was unnormalized, all the curves are in arbitrary units. 

protons the calculated and experimental curves were 
made to correspond at 1 BeV/c. 

In Fig. 8 the expression (34) is compared with the 
deuteron distribution measured at CERN by Cocconi 
et al. Here the deuterons were observed at an angle of 
10.9° and the energy of the incident protons was 25 
BeV. Because the measured proton distribution was not 
normalized in this experiment all the curves are plotted 
in arbitrary units. 

In all the cases shown in Figs. 3 to 8 the expression 
(34) satisfactorily represents the measured deuteron 
momentum distribution, if |F 0 | is taken to be a 
constant independent of energy. At 90° deuteron 
production from direct nucleon-nucleon collisions is 
kinematically forbidden, and deuterons must neces
sarily be produced by a secondary process such as we 
have described. The expression (34) reproduces not 

only the momentum spectrum of deuterons at 90° in 
the laboratory system, but also reproduces the spectra 
of those deuterons observed at smaller angles using the 
same value of | VQ \. It seems clear that the mechanism 
we have described must be responsible for the majority 
of deuterons at all angles. 

The value of | 7 0 | , 25±5 MeV, used to fit the 
experimental data in Figs. 3-6 is the same as that found 
from a previous analysis of the emulsion data and is in 
reasonable agreement with the (mainly absorptive) 
potential used by Bjorklund et al. to fit the proton 
scattering data at about 300 MeV. 

The result (34) depends on the radius of the target 
nucleus through the integral / and through the flux of 
cascade protons np(%K). Cocconi et al? found that the 
ratio of deuterons to protons of the same momentum 
increased slightly with increase in the radius of the 
target nucleus. The value of / decreases rather rapidly 
with this radius, and we are, therefore, dependent on 
the observed np(%K) increasing sufficiently with nuclear 
radius to be consistent with the CERN result. 

It must be remembered, however, that in our model 
we have obtained the incident flux by assuming that 
the protons in the nucleon cascade are scattered 
randomly throughout the nuclear volume. It would 
probably be more realistic to imagine that the nucleon 
cascade occupies only part of the nuclear volume and 
that as the target nucleus increases in size, the volume 
occupied by the nucleon cascade increases more slowly 
than the nuclear volume. The flux of incident neutrons 
and protons representing the nucleon cascade in the 
model would be consequently increased and the en
hanced deuteron production could also contribute to 
the CERN result. 

Such an improvement in the model could perhaps 
effect a small reduction in the depth \Vo\ of the optical 
potential we have used to fit the expression (34) to the 
experimental results, although such an alteration would 
not affect the energy dependence of this potential. 

The magnitude of the optical potential necessary to 
explain the observed deuteron momentum spectra is 
approximately constant for incident nucleon energies 
between 300 and 3000 MeV. 

The authors are indebted to Professor H. Messel for 
his enthusiastic support. This work was supported in 
part by the Nuclear Research Foundation within the 
University of Sydney. 


